UST Inspector Training Webinar

Tank Tightness Testing

Have You Checked Your Tank Today?

Inspect & Maintain

Tanknology
Non-Volumetric Tank Tightness Tests (TTT), as the name implies, do not rely on volume measurement to determine the tightness (Leak) status of a storage tank.

Some TTT manufacturers use a combination of Volumetric and Non-Volumetric techniques to determine a tank's tightness.
Tank Tightness Testing – Non-Volumetric

Most Non-Volumetric TTT are Under Fill Methods

Over Fill

Under Fill

Ullage area
Tank Tightness Testing – Non-Volumetric

Non-Volumetric TTT’s employ one or more of the following Techniques to determine the tightness of a storage tank.

Apply Vacuum or Pressure to the tank ullage

“AND Monitor For”

Audible ingress of air
Measured increase of water
Product level increase or decrease
Vacuum or Pressure decrease
Within the same test method, different leak detection modes often apply to the wetted area and Ullage area of a tank.
Tank Tightness Testing – Non-Volumetric

Widely used TTT System Manufacturers (Non tracer type)

• Estabrook EZY CHEK Systems (originally listed as Horner EZY CHEK)

• USTest, Inc. (previously listed as Sound Products Manufacturing, Inc.)

• Tanknology
Basic Principles of Operation

- Apply vacuum to the tank
- Monitor for change in acoustic signal relative to baseline audio
- Monitor for ingress of water using a water detection sensor
Basic Principles of Operation

0.1 gph/ A tank system should not be declared tight when there is a substantial increase in the acoustic noise signal (when the tank is under pressure or vacuum) above the background signal (prior to pressurization or evacuation) in the frequency interval of 10 kHz to 20 kHz. /7,550 gallons (pressure test), 5,250 gallons (vacuum test).
Basic Principles of Operation

Apply vacuum to the tank
Monitor for audible ingress of air or water
Monitor vacuum decay pattern
Monitor for increase of tank bottom water via a water sensor
Tank Tightness Testing – Non-Volumetric

Tanknology Typical Tank Test Set-up

1. Vapor Recovery piping plugged off as necessary.
2. Vacuum Hose connected to vent line and truck.
3. Test Probe inserted in tank below product level.
4. Vacuum applied on tank system.
Tank Tightness Testing – Non-Volumetric

Bubble Signature due to Hole in Tank

1. Tank System under vacuum.
2. Hole in tank below product level allows air to enter tank.
3. Since air enters below product level, a bubble signature is produced.
Tank Tightness Testing – Non-Volumetric

Air Ingress due to Hole(s) Above Product Level

1. Vacuum applied to tank system.
2. Air Ingress detected due to one or more of the following:
 A. Hole in Vent Line
 B. Hole in Fill Pipe or Vapor Recovery Riser
 C. Hole in Vapor Recovery piping
 D. Hole in Tank above Product Level
3. All test plugs are double checked for leaks.
4. All aboveground Vapor Recovery piping is double checked.
5. Risers are eliminated as source of problem by lowering test plugs to tank top.
Water Ingress due to Hole Below Water Table

1. Vacuum applied to Tank System.
2. Hole in tank below Water Table allows water to enter Tank System.
3. Note that it doesn’t matter whether the hole is above or below product level to allow an ingress of water.
4. Water Ingress detected and measured by Water Level Sensor on bottom of Test Probe.
END VIEW OF TANK BOTTOM

This diagram shows Tanknology’s Magnetstrictive Water Level Sensor.

Minimum data = 0.017" ; Maximum = 6".
Tank Tightness Testing – Non-Volumetric

TTT’s must consider all pressures on a tank to avoid tank damage.
Tank Tightness Testing – Non-Volumetric

The test system must consider all pressures on a tank to avoid tank damage.

If we apply 1.0 psi of vacuum

90 inches water on the tank
60 inches gas in tank = 1.56 psi

Total differential pressure across the tank wall at the bottom of the tank is 2.68 psi

3.24 psi
Tank Tightness Testing – Non-Volumetric

Limitations that apply to some Non-Volumetric Test Methods

<table>
<thead>
<tr>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone (hydrophone) should be located within 60 feet of any possible leak source.</td>
</tr>
<tr>
<td>Vacuum test method may not be effective in some tank excavation backfill (such as clay) because it may plug holes in tank.</td>
</tr>
<tr>
<td>If free product is present in tank excavation backfill, a leak in the free product zone may not be detected by a vacuum test method.</td>
</tr>
<tr>
<td>Background noise may interfere with operators ability to hear audible sounds</td>
</tr>
<tr>
<td>Excessive differential pressure across the tank wall at any location in the tank could damage tank.</td>
</tr>
</tbody>
</table>