CLEAR Program
Teams

Land Use & Climate Resilience

Geospatial Technology & Training

Water

RESEARCH
TOOLS & TRAINING
OUTREACH
General Permit for the Discharge of Stormwater from Small Municipal Separate Storm Sewer Systems

Issued: January 20, 2016
Effective: July 1, 2017
Expires: June 30, 2022

Connecticut Department of Energy & Environmental Protection
Bureau of Materials Management & Compliance Assurance
Water Permitting & Enforcement Division
Today’s offering

1. The setting....
2. Sticks & carrots
3. Results
4. Coordination & etc.
5. Next?
The campus LID online tour

UConn Green Infrastructure Virtual Tour
A virtual tour of some of the green infrastructure practices being utilized on the University of Connecticut’s Campus in Storrs, CT.

The University of Connecticut has begun to replace traditional stormwater practices in parts of campus with green infrastructure practices. Green infrastructure protects water quality by allowing stormwater to soak into the ground rather than run over impervious surfaces where it can collect pollutants and transport them to the stormwater system. This tour provides information on the various practices being used.
2009
Towers Pervious Asphalt Lot
Gant Plaza Green Roof

Retained 54% of precipitation!

2011

Laurel Hall
Rain Gardens & pervious asphalt parking stalls near Whetten Center.
Tree Filters
(2014-15)
Basketball practice bioretention (2015)
Today’s offering

① The setting....
② Sticks & carrots
③ Results
④ Coordination & etc.
⑤ Next?
A small city plunked down in the countryside
Big Bad Neighbor

By DAVID MORSE
Northeast Magazine

MARCH 17, 2002

Beginning about six years ago, whenever Jean Kenny's two young grandchildren were bathed in her tub, they got severe rashes. "At first, we didn't suspect the water," Kenny says. "Babies are always getting rashes."

Nancy, the mother of the oldest child, was the first to make the connection: "Mom, this only happens when they come to your house!" By this time the children were toddlers, old enough to sit up in the tub, and the rashes corresponded to where the water level reached on their bodies.

Last October we were seated at the kitchen table in Kenny's home, a white vinyl-sided colonial just off Separatist Road, which rims the southwestern edge of the University of Connecticut's Storrs campus. Outside, hanging vertically on the front door, was an American flag; Kenny also wore a small flag pin made from glass beads, in honor of the victims of September 11.

Jean Kenny is an affable woman of 63 — Irish Catholic, with blond hair streaked with gray, a lively face, and a readiness to laugh that she admits is a way of coping with stress. I'm catching her at her lunch break, between clients. Kenny has a busy schedule: She's a licensed clinical social worker employed full time by the town of Mansfield to counsel elderly clients at the senior center; she also sees private clients at night and gets occasional calls for crisis intervention.
The University of Connecticut Sustainable Design and Construction Policy
(Adopted March 2007)

The University of Connecticut shall plan, design, construct, renovate and maintain sustainable, energy- and water-efficient buildings that:

- Yield cost savings through lowered lifetime operating costs,
- Provide enhanced learning atmospheres for students and healthier environments for all building occupants and visitors, and
- Realize the University’s commitment to responsible growth and environmental stewardship.

Accordingly, for any building construction or renovation project entering the pre-design planning phase, and whenever the estimated total project cost exceeds $5 million, excluding the cost of equipment other than building systems, the University shall establish the Leadership in Energy & Environmental Design (LEED) Silver rating as a minimum performance requirement. The University shall comply with all applicable LEED protocols, including registering the project with the US Green Building Council at the beginning of the design phase and applying for LEED certification at project completion.

The University may exempt a project from the minimum performance requirements of this policy only with the approval of the University’s Board of Trustees (acting through its Building, Grounds & Environment Committee). To attain such exemption, and in addition to complying with procedures specified for a similar exemption pursuant to any applicable state law or regulation, the University shall prepare a written analysis substantiating that the costs of achieving LEED certification would significantly outweigh the benefits.
Today’s offering

① The setting....
② Sticks & carrots
③ Results
④ Coordination & etc.
⑤ Next?
The CT list of impaired waters

<table>
<thead>
<tr>
<th>Probable Source</th>
<th>Probable Source Group</th>
<th>Miles Threatened or Impaired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Unknown</td>
<td>Unknown</td>
<td>393</td>
</tr>
<tr>
<td>Unspecified Urban Stormwater</td>
<td>Urban-Related Runoff/Stormwater</td>
<td>214</td>
</tr>
<tr>
<td>Municipal Point Source Discharges</td>
<td>Municipal Dishcarges/Sewage</td>
<td>132</td>
</tr>
<tr>
<td>Sources Outside State Jurisdiction Or Borders</td>
<td>Other</td>
<td>107</td>
</tr>
<tr>
<td>Industrial Point Source Discharge</td>
<td>Industrial</td>
<td>105</td>
</tr>
<tr>
<td>Combined Sewer Overflows</td>
<td>Municipal Dishcarges/Sewage</td>
<td>80</td>
</tr>
<tr>
<td>Landfills</td>
<td>Land Application/Waste Sites/Tanks</td>
<td>49</td>
</tr>
<tr>
<td>Contaminated Sediments</td>
<td>Legacy/Historical Pollutants</td>
<td>49</td>
</tr>
<tr>
<td>Sanitary Sewer Overflows (Collection System Failures)</td>
<td>Municipal Dishcarges/Sewage</td>
<td>47</td>
</tr>
<tr>
<td>Impacts From Hydrostructure Flow Regulation/Modification</td>
<td>Hydromodification</td>
<td>42</td>
</tr>
<tr>
<td>Upstream Impoundments (E.G., PI-566 Nrcs Structures)</td>
<td>Hydromodification</td>
<td>41</td>
</tr>
<tr>
<td>Channelization</td>
<td>Hydromodification</td>
<td>39</td>
</tr>
<tr>
<td>Site Clearance (Land Development Or Redevelopment)</td>
<td>Construction</td>
<td>38</td>
</tr>
<tr>
<td>Baseflow Depletion From Groundwater Withdrawals</td>
<td>Hydromodification</td>
<td>32</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Agriculture</td>
<td>29</td>
</tr>
</tbody>
</table>

Connecticut Probable Sources of Impairments for Threatened and Impaired Rivers and Streams Reporting Year 2006

Description of this table
The mechanisms driving the syndrome are complex and interactive, but most impacts can be ascribed to a few major large-scale sources, primarily urban stormwater runoff delivered to streams by hydraulically efficient drainage systems.
An innovative SURROGATE approach

National research base

State research base
The key issue: Would LID reduce stormwater volume enough to serve as a feasible alternative for a planned 55-acre diversion of runoff from Eagleville → Fenton?
DEEP & UCONN Drainage MOU

- Amends/replaces September 2009 agreement
- Goal: to reduce annual runoff volume by 797,600 cubic feet OR equivalent area of effective impervious cover of 249,200 sq ft
- Requires Maintenance of LID features
New MS4 as of July 2017

UConn no longer exempt
60% of students and parents report that a college’s commitment to environmental issues has an impact on their choice

(The Princeton Review, 2015)
A handy teaching tool

- K-12
- College students
- Professionals
- Municipal officials
A public outreach & education amenity

From colleagues...

...to Congressmen
Research opportunities
the monitoring weir

Discharge, temperature, conductivity and precipitation
Posted real-time to

http://clear.uconn.edu/projects/eagleville
Awards & kudos

SIERRA
ACTIVISM ADVENTURE LIFESTYLE GREEN LIFE BLOG SLIDESHOWS MAGAZINE

TEN COOLEST SCHOOLS

Overall Ranking 2015

<table>
<thead>
<tr>
<th>Ranking</th>
<th>University</th>
<th>Country</th>
<th>Total Score</th>
<th>Setting and Infrastructure</th>
<th>Energy and Climate Change</th>
<th>Waste</th>
<th>Water</th>
<th>Transportation</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University of Nottingham</td>
<td>UK</td>
<td>7267</td>
<td>724</td>
<td>1700</td>
<td>1800</td>
<td>996</td>
<td>1139</td>
<td>908</td>
</tr>
<tr>
<td>2</td>
<td>University of Connecticut</td>
<td>US</td>
<td>7156</td>
<td>917</td>
<td>1625</td>
<td>1575</td>
<td>900</td>
<td>1078</td>
<td>1061</td>
</tr>
<tr>
<td>3</td>
<td>University of California, Davis</td>
<td>US</td>
<td>7134</td>
<td>811</td>
<td>1525</td>
<td>1725</td>
<td>900</td>
<td>1153</td>
<td>1020</td>
</tr>
<tr>
<td>4</td>
<td>University College Cork National University of Ireland</td>
<td>Ireland</td>
<td>7070</td>
<td>692</td>
<td>1600</td>
<td>1725</td>
<td>900</td>
<td>1144</td>
<td>1009</td>
</tr>
<tr>
<td>5</td>
<td>University of Oxford</td>
<td>UK</td>
<td>6963</td>
<td>626</td>
<td>1458</td>
<td>1725</td>
<td>898</td>
<td>1207</td>
<td>1049</td>
</tr>
</tbody>
</table>
And let’s not forget ...

Estimated savings on the avoided 55-acre diversion

$1M

Plus: avoidance of lots of negative faculty and public reaction
Today’s offering

① The setting....
② Sticks & carrots
③ Results
④ Coordination & etc.
⑤ Next?
Stuff in the ground: s.uconn.edu/virtualgsitour

UConn Green Infrastructure Virtual Tour
A virtual tour of some of the green infrastructure practices being utilized on the University of Connecticut's Campus in Storrs, CT.

The University of Connecticut has begun to replace traditional stormwater practices on parts of campus with green infrastructure practices. Green infrastructure protects water quality by allowing stormwater to soak into the ground rather than run over impervious surfaces where it can collect pollutants and transport them to the stormwater system. This tour provides information on the various practices being used.
Impacts beyond Eagleville watershed
Mansfield LID Checklist (POCD)

EAGLEVILLE BROOK WATERSHED MANAGEMENT PLAN—SUGGESTED TOWN CHECKLIST

Town of Mansfield Low Impact Development (LID) Site Planning and Design Checklist

Items listed below need to be considered by developers when submitting plans for subdivisions. Due to individual site differences, not all items will apply to each individual property. Check items that have been applied, or explain why the items have not been used. For more information on LID practices and how to implement them please refer to the 2004 Connecticut Stormwater Quality Manual.

1. **Assessment of Natural Resources**
 - Natural resources and constraints have been indicated and are identified on the plans (wetlands, rivers, streams, flood hazard zones, meadows, agricultural land, tree lines, slopes identified with 2 foot contours, soil types, exposed ledge & stone walls). Is the property delineated to avoid unnecessary clearing or grading.
 - Native vegetation outside the immediate construction areas remains untroubled or will be restored.
 - Plan includes detail on construction methods and sequencing to minimize compaction of natural and future stormwater areas.

For items not checked, please use the space below to explain why these items were not implemented or possible for your project, or any other pertinent information.

2. **Preservation of Open Space**
 - Percent of natural open space calculation has been performed.
 - An open space or cluster subdivision design has been used.
 - Open space common areas are delineated.
 - Open space is retained in a natural condition.
 - Reduced setbacks, frontages, and right-of-way widths have been used where practicable.

For items not checked, please use the space below to explain why these items were not implemented or possible for your project, or any other pertinent information.

3. **Minimization of Land Disturbance**
 - The proposed building lots are located where development can occur with the least environmental impact. Disturbance areas have been delineated to avoid unnecessary clearing or grading.
 - Native vegetation outside the immediate construction areas remains undisturbed or will be restored.
 - Plan includes detail on construction methods and sequencing to minimize compaction of natural and future stormwater areas.

For items not checked, please use the space below to explain why these items were not implemented or possible for your project, or any other pertinent information.

4. **Reduce and Disconnect Impervious Cover**
 - Impervious surfaces have been kept to the minimum extent practicable, using the following methods (check which methods were used):
 - Minimized street widths
 - Minimized driveway area
 - Minimized sidewalk area
 - Minimized cul-de-sacs
 - Minimized building footprint
 - Minimized parking lot area
 - Impervious surfaces have been disconnected from the stormwater system, and directed to appropriate pervious areas, where practicable.
 - Pervious areas may be LID practices, or uncompacted turf areas.

For items not checked, please use the space below to explain why these items were not implemented or possible for your project, or any other pertinent information.

5. **LID Practices Installed**
 - Sheet flow is used to the maximum extent possible to avoid concentrating runoff.
 - Vegetated swales have been installed adjacent to driveways and/or roads in lieu of curb and gutter stormwater collection system.
 - Rooftop drainage is discharged to bioswale/groundwater garden.
 - Rooftop drainage is discharged to dry well or infiltration trench.
 - Rainwater harvesting systems such as rain barrels or cisterns have been installed to manage roof drainage.
 - Driveway, roadway, and/or parking lot drainage is directed to bioswale/groundwater gardens.
 - Cul-de-sacs include a landscaped bioswale/groundwater garden.
 - Vegetated roof systems have been installed, if appropriate.
 - Pervious pavements have been installed, if appropriate.

For items not checked, please use the space below to explain why these items were not implemented or possible for your project, or any other pertinent information.
Tracking Stormwater Impacts

<table>
<thead>
<tr>
<th>SUN Dial PICP</th>
<th>Size (ft^3)</th>
<th>1450</th>
<th>Capacity (ft^3)</th>
<th>0</th>
<th>DAY</th>
<th>2013 May</th>
<th>2013 Jun</th>
<th>2013 Jul</th>
<th>2013 Aug</th>
<th>2013 Sep</th>
<th>2013 Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed size (ft^2)</td>
<td>0</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>19.3</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency factor</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>7.3</td>
<td>30.2</td>
<td>10.9</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>3</td>
<td>0.0</td>
<td>38.7</td>
<td>2.4</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>25.4</td>
<td>2.4</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.8</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.3</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>7</td>
<td>0.0</td>
<td>48.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>8</td>
<td>0.0</td>
<td>50.2</td>
<td>0.0</td>
<td>9.7</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>9</td>
<td>82.2</td>
<td>0.0</td>
<td>0.0</td>
<td>8.5</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>10</td>
<td>110.0</td>
<td>0.0</td>
<td>0.0</td>
<td>163.1</td>
<td>21.8</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>11</td>
<td>14.5</td>
<td>171.6</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>12</td>
<td>20.5</td>
<td>124.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>13</td>
<td>4.8</td>
<td>0.0</td>
<td>0.0</td>
<td>81.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>14</td>
<td>0.0</td>
<td>280.3</td>
<td>5.0</td>
<td>3.6</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>15</td>
<td>0.0</td>
<td>4.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>16</td>
<td>76.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>17</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>18</td>
<td>0.0</td>
<td>27.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>19</td>
<td>0.0</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>20</td>
<td>32.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>21</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>22</td>
<td>19.3</td>
<td>0.0</td>
<td>0.0</td>
<td>137.8</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>23</td>
<td>0.0</td>
<td>0.0</td>
<td>95.5</td>
<td>4.8</td>
<td>2.4</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>24</td>
<td>124.5</td>
<td>0.0</td>
<td>52.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>25</td>
<td>55.6</td>
<td>96.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>26</td>
<td>15.7</td>
<td>4.8</td>
<td>113.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>27</td>
<td>2.4</td>
<td>65.3</td>
<td>0.0</td>
<td>163.1</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>28</td>
<td>0.0</td>
<td>5.8</td>
<td>0.0</td>
<td>4.8</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>29</td>
<td>42.3</td>
<td>0.0</td>
<td>0.0</td>
<td>19.3</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>30</td>
<td>74.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install date</td>
<td>May-13</td>
<td>31</td>
<td>2.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL (ft^3)	677.9	1471.8	430.2	437.4	306.9	0.0
Montly total runoff (ft^3)	677.9	1471.8	430.2	437.4	306.9	0.0
% treated	100.0	100.0	100.0	100.0	100.0	100.0
Tracking Stormwater Impacts

Over 54 million gallons treated to date!

<table>
<thead>
<tr>
<th>Location</th>
<th>Location details</th>
<th>Treatment Type</th>
<th>Date</th>
<th>Gallons Treated</th>
<th>Total Gallons Traded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mansfield apartments-E</td>
<td>Fenton</td>
<td>Bioretention</td>
<td>Sep-10</td>
<td>47979</td>
<td>358934</td>
</tr>
<tr>
<td>Mansfield apartments-W</td>
<td>Fenton</td>
<td>Bioretention</td>
<td>Sep-10</td>
<td>142791</td>
<td>1068216</td>
</tr>
<tr>
<td>Storrs Hall</td>
<td>Fenton</td>
<td>Pervious asphalt</td>
<td>Aug-12</td>
<td>77190</td>
<td>577457</td>
</tr>
<tr>
<td>Storrs Hall</td>
<td>Fenton</td>
<td>Green roof</td>
<td>Sep-12</td>
<td>17173</td>
<td>128474</td>
</tr>
<tr>
<td>Oak Hall N</td>
<td>Fenton</td>
<td>Bioretention</td>
<td>Aug-12</td>
<td>123934</td>
<td>927149</td>
</tr>
<tr>
<td>Oak Hall S</td>
<td>Fenton</td>
<td>Bioretention</td>
<td>Aug-12</td>
<td>74714</td>
<td>558939</td>
</tr>
<tr>
<td>Oak Hall</td>
<td>Fenton</td>
<td>PICP</td>
<td>Aug-12</td>
<td>35587</td>
<td>266227</td>
</tr>
<tr>
<td>Whetton W</td>
<td>Fenton</td>
<td>Bioretention</td>
<td>Sep-13</td>
<td>18647</td>
<td>139498</td>
</tr>
<tr>
<td>Whetton E</td>
<td>Fenton</td>
<td>Bioretention</td>
<td>Sep-13</td>
<td>71621</td>
<td>535797</td>
</tr>
<tr>
<td>Whetton</td>
<td>Fenton</td>
<td>Pervious asphalt</td>
<td>Sep-13</td>
<td>37864</td>
<td>283263</td>
</tr>
<tr>
<td>Klinck</td>
<td>Fenton</td>
<td>Bioretention</td>
<td>Jul-15</td>
<td>1718</td>
<td>12853</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>649219</th>
<th>4856806</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>7,311,558</td>
<td>54,710,620</td>
</tr>
</tbody>
</table>

Grand Total

| | | 7,311,558 | 54,710,620 |
Cumulative volume of stormwater reduction by campus LID practices

81 x
Cumulative area treated with LID practices - UConn Storrs
Total area of impervious cover disconnected by campus LID practices = >11 acres =

8.5 x
De-listing

Lower segment of Eagleville Brook delisted in 2014 303d reporting round
Today’s offering

① The setting....
② Sticks & carrots
③ Results
④ Coordination & etc.
⑤ Next?
CLEAR & OEP

- 319-funded watershed advisory committee
- 20% Dietz time formally dedicated to OEP for site and plan reviews, documentation, etc.
- Campus master plan input
- Ongoing dialogue with town of Mansfield
- Series of projects partially funded by 319

The Eagleville Brook Project was funded in part by the CT DEEP through a US EPA § 319 nonpoint source Clean Water Act grant
Facilities maintenance training

- Classroom and field training for UConn maintenance staff
- Field checklists for techs to use
- Part of new requirements for FMC MOU
The Eagleville Brook Project was funded in part by the CT DEEP through a US EPA § 319 nonpoint source Clean Water Act grant.
Today’s offering

① The setting....
② Sticks & carrots
③ Results
④ Coordination & etc.
⑤ Next?
Research
Focusing on UConn NextGen

STEM Residence Hall well underway
Dietz prays to the stormwater gods for divine guidance...